摘要: 在之前的文章《講透大數據,我只需要一頓飯》里,用做飯這件大家身邊的事情來介紹了大數據及資料分析工程,應該能夠讓大家對資料分析這件看上去很專業的行業有了一定的認識,很高興的是文章也得到了很多資料圈專業人士的共鳴和互動。 這篇文章我們會順著之前的思路,稍微深入一點,聊聊資料分析架構。

摘要: In this post we’re going to work with time series data, and write R functions to aggregate hourly and daily time series in monthly time series to catch a glimpse of their underlying patterns. For this analysis we’re going to use public meteorological data recorded by the government of the Argentinian province of San Luis. Data about rainfalls, temperature, humidity and in some cases winds, is published in the REM website (Red de Estaciones Meteorológicas, http://www.clima.edu.ar/). Also, here you can download meteorological data (in .csv format) that has been recorded by weather stations around different places from San Luis.

摘要: 編程時遇到問題大部分的人會習慣性去查找資料,但本篇作者認為,相較於快速找到答案缺法思考過程,應學習如何用函數和概念理解每次遇到的問題;調整學習法或編程習慣,才能真正提升效率、也能幫助我們對語法更加熟知。

摘要: The visualization shows a Bayesian two-sample t test, for simplicity the variance is assumed to be known. It illustrates both Bayesian estimation via the posterior distribution for the effect, and Bayesian hypothesis testing via Bayes factor. The frequentist p-value is also shown. The null hypothesis, H0 is that the effect δ = 0, and the alternative H1: δ ≠ 0, just like a two-tailed t test. You can use the sliders to vary the observed effect (Cohen's d), sample size (n per group) and the prior on δ.

摘要: 自深度學習(deep learning)技術問世後,許多人都相信這將是帶領我們逐步走入「通用 AI」(general AI)夢想的關鍵,企業領導者也都在演講中談及 AI 時代將會如何來臨,然而事情真的如此順利嗎?電腦視覺與 AI 領域專家 Filip Piekniewski 並不這麼認為,近日在部落格的一篇文章中,Piekniewski 也詳細談及對於現今 AI 發展進度的看法,在他看來,已經有許多跡象都顯示出 AI 產業的「凜冬將至。

摘要: 辨識顏色是件容易的事情:只要光的波長爲510納米,大多數人就會說它是綠色。然而,要想根據一個特定的分子特徵辨識出對應的味道,那是非常困難的。現在這個難題有新的解決方案了。雷鋒網瞭解到,22個計算機科學家團隊公佈了一套算法,能夠根據不同分子的化學結構來辨識不同氣味。這些方案可以發揮什麼作用仍有待觀察。但是有一種可能,這些的算法可以幫助香味商和食品生產者設計新型的氣味劑,而且可以量身定製某種味道。

摘要: 雖然ICLR 2018將公開評審改成了評審人和作者相互不知道雙方信息的雙盲評審,但論文的投稿者仍然可以通過其他公開渠道對其論文進行推廣。尤其對於大公司研究院來說,早早公開自己的論文能比盲審有額外加成,例如雷鋒網就注意到,就在上週五ICLR論文投遞截止後不久,NVIDIA在Blog上就發布了一篇通過生成對抗網絡(GAN)產生獨特面孔的新方法,這篇論文正是NVIDIA投遞到ICLR的論文之一。

摘要: 近日,深度學習三駕馬車之一的 Yann LeCun 教授與斯坦福大學 NLP 掌門人 Christopher Manning 教授共同出席了斯坦福 AI 實驗室所舉辦的 AI 沙龍,一同討論了關於「什麼是我們應該加入到深度學習系統中的先驗知識」的話題。儘管兩位教授對此話題有着不同的觀點,但是專家之間思想的碰撞總能帶給大家很多啓發。

摘要: 生成對抗網絡一直是非常美妙且高效的方法,自 14 年 Ian Goodfellow 等人提出第一個生成對抗網絡以來,各種變體和修正版如雨後春筍般出現,它們都有各自的特性和對應的優勢。本文介紹了主流的生成對抗網絡及其對應的 PyTorch 和 Keras 實現代碼,希望對各位讀者在 GAN 上的理解與實現有所幫助。

Popular Tags

每月文章